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An excited random walk (ERW) is a self-interacting non-Markovian random
walk in which the future behavior of the walk is influenced by the number of
times the walk has previously visited its current site. We study the speed of the
walk, defined as V = limn→∞(Xn/n), where Xn is the state of the walk at time n.
While results exist that indicate when the speed is nonzero, there exists no explicit
formula for the speed. It is difficult to solve for the speed directly due to complex
dependencies in the walk since the next step of the walker depends on how many
times the walker has reached the current site. We derive the first nontrivial upper
and lower bounds for the speed of the walk. In certain cases these upper and
lower bounds are remarkably close together.

1. Introduction

A simple random walk on Z can be thought of as a simple discrete model for Color: 102,117

random motion where at each time step the “walker” tosses a (possibly biased) coin
and steps right if he gets a heads and left if he gets a tails. Mathematically, if we
denote the position of the walk after n steps by Sn then we can represent the walk as
Sn =

∑n
i=0 ξi , where the sequence of random variables ξ1, ξ2, ξ3, . . . represents the

successive steps of the walk. Since the steps are given by the outcomes of repeated
tosses of a coin, the random variables {ξi }i≥0 are independent and identically
distributed (i.i.d.) with P(ξ1 = p) and P(ξ1 =−1)= 1− p (here p ∈ (0, 1) is the
probability that the coin the walker is tossing comes up heads).

Simple random walks are very well known and much is known about them, but
in this paper we will focus on a different model for random motion called an excited
random walk. In an excited random walk, rather than the steps of the walk being
i.i.d. the probability of the walker moving right (+1) or left (−1) from a site on
the n-th step is a function of how many times the walker has stepped on that site
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3 −2 −1 0 1 2 3

1−p1 p1

−3 −2 −1 0 1 2 3

1−p2 p2

−3 −2 −1 0 1 2 3

1−p3 p3

−3 −2 −1 0 1 2 3

1/2 1/2

Figure 1. A partial example of an excited random walk with M=3,
Ep = (p1, p2, p3), and transition probabilities shown. Top left: the
initial state of the walker. Top right: a possible state after 9 steps.
Bottom left: 10 steps into the same walk, with the most recent step
to the right. Bottom right: 11 steps into the walk, the walker is
now in a state with no more cookies left and has equal transition
probabilities to the left and right.

by time n. To describe the excited random walk model, we begin by fixing an
integer M ≥ 1 and parameters p1, p2, . . . , pM ∈ (0, 1). When the walker visits a
location i for the j -th time, if j ≤ M then the walker tosses a coin with probability
of heads pj , while if j > M the walker tosses a fair coin

(
p = 1

2

)
to determine if

the next step is left or right. That is, an excited random walk is a stochastic process
{Xn}n≥0 starting at X0 = 0 and such that Xn+1 = Xn ± 1 and

P(Xn+1=Xn + 1 | X0=x0, X1=x1, . . . , Xn=xn)

=

{
pj if #{k ≤ n : xk=xn}= j ≤ M,
1
2 if #{k ≤ n : xk=xn}> M.

Excited random walks are sometimes also called “cookie random walks” due to
the following interpretation of the dynamics. We imagine that initially there is an
identical stack of M cookies at each site. At every step the random walker takes the
top cookie from the stack at the current site (if there is at least one cookie left) and
eats it. The cookie induces an “excitement” or drift which causes the walker to step
to the right with probability pj (or left with probability 1− pj ). If the walker ever
returns to a site where all the cookies have already been eaten then there is nothing
to “excite” him and so he steps left/right with equal probability. See Figure 1. Due
to this “cookie” interpretation of excited random walks we will often refer to the
parameter M as the number of cookies at each site and the parameter pj as the
“strength” of the j-th cookie.
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 103

1.1. Background and previous results. Excited random walks were first intro-
duced by Benjamini and Wilson [2003]. In the model they considered, however,
there was only one cookie at each site M = 1. This model was then generalized by
Zerner [2005] to allow for multiple cookies at each site, but with the restriction that
all pj ≥

1
2 ; that is, all cookies induced a nonnegative drift for the walker. Kosygina

and Zerner [2008] further generalized the model to allow for the possibility of both
“positive”

(
pj >

1
2

)
and “negative”

(
p < 1

2

)
cookies in the stack of cookies at each

site. In fact, the model of excited random walks is even more general than what we
have described here. Certain results have even allowed for placing random cookie
stacks at sites (rather than the same cookie stack at each site) and for infinitely many
cookies at each site. In this paper, however, we will restrict ourselves to the simpler
model described above of M cookies at each site with strengths p1, p2, . . . , pM .

The behavior of simple random walks is quite easy to analyze since, as noted
above, the walk Sn =

∑n
i=1 ξi is the sum of i.i.d. random variables. In particular, the

law of large numbers implies limn→∞(Sn/n)= E[ξ1] = 2p− 1 with probability 1.
That is, the random walk has a deterministic limiting speed of 2p−1. Thus, if p> 1

2
then the walk moves to the right with positive speed, while if p< 1

2 , the walk moves
to the left with speed 1− 2p (or equivalently, for any p ∈ [0, 1] the walker simply
moves with velocity 2p−1). In either of these cases we say that the walk is transient
since it only visits any site a finite number of times. More generally, if a random walk
is transient with nonzero speed, it is ballistic. For one-dimensional simple random
walks, transience and ballisticity are equivalent, but as we will see in our discussion
of excited random walks, this is not always the case. The case p= 1

2 is more delicate,
but it was shown by Pólya [1921] that a one-dimensional simple symmetric random
walk is recurrent; that is, the walk visits every site infinitely many times.

In contrast to simple random walks, the behavior of excited random walks is
much more difficult to determine since the self-interacting nature of the walk creates
dependencies among steps of the walk that are very hard to handle. Moreover, the
behavior of the walk is at times like a biased random walk (on the first M visits
to sites), while at other times it is like a symmetric random walk (after more than
M visits to a site). Thus, even the question of determining whether the excited
random walk is recurrent or transient is quite difficult. In spite of these difficulties, a
number of characteristics of excited random walks have been determined to depend
on a single easy to calculate parameter.

δ =

M∑
j=1

(2pj − 1). (1)

We will use the notation δj = 2pj − 1 for the drift of the j-th cookie in the cookie
stack. Thus, the parameter δ =

∑M
j=1 δj can be thought of as the net total drift

contained in all the cookies in the cookie stack at each site.
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104 E. MADDEN, B. KIDD, O. LEVIN, J. PETERSON, J. SMITH AND K. M. STANGL

Theorem 1 [Zerner 2005; Kosygina and Zerner 2008]. The parameter δ determines
the recurrence or transience of the excited random walk:

(1) If δ > 1 then the walk is transient to the right, that is,

P( lim
n→∞

Xn =+∞)= 1.

(2) If δ <−1 then the walk is transient to the left, that is,

P( lim
n→∞

Xn =−∞)= 1.

(3) If δ ∈ [−1, 1] then the walk is recurrent, that is,

P(lim inf
n→∞

Xn =−∞, lim sup
n→∞

Xn =+∞)= 1.

Zerner [2005] also proved that excited random walks have a limiting speed. That
is, given any parameters M and Ep = (p1, p2, . . . , pM) for an excited random walk
there is a constant VM, Ep ∈ [−1, 1] such that

lim
n→∞

Xn

n
= VM, Ep, with probability 1. (2)

Determining the exact value of the speed VM, Ep as a function of M and Ep, however,
remains an open problem and is the focus of this paper. While there is still no
explicit formula for VM, Ep in general, it is known that the parameter δ determines
exactly when the speed is positive, negative or zero.

Theorem 2 [Basdevant and Singh 2008a; Kosygina and Zerner 2008]. The pa-
rameter δ determines the sign of the limiting speed VM, Ep of the excited random
walk:

(1) If δ > 2 then VM, Ep > 0.

(2) If δ <−2 then VM, Ep < 0.

(3) If δ ∈ [−2, 2] then VM, Ep = 0.

Remark 3. Note that Theorems 1 and 2 together highlight a very peculiar feature
of excited random walks: if δ ∈ (1, 2] then the walk is transient to the right, but
with zero asymptotic speed. At first this might seem contradictory, but in fact it
holds because in this case Xn grows to infinity roughly like nδ/2 if δ ∈ (1, 2) or like
n/ log n if δ = 2 [Basdevant and Singh 2008b; Kosygina and Zerner 2008].

Example 4. Let M = 3 and Ep = (p, p, p). Then δ = 6p− 3.

(1) If p ∈
[1

3 ,
2
3

]
then δ ∈ [−1, 1], so the walk is recurrent.

(2) If p ∈
[1

6 ,
5
6

]
then δ ∈ [−2, 2], so the walk is transient with VM, Ep = 0.

(3) If p ∈
[
0, 1

6

)
then δ <−2, so the walk is ballistic with VM, Ep < 0.

(4) If p ∈
(5

6 , 1
]

then δ > 2, so the walk is ballistic with VM, Ep > 0.
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 105

Remark 5. It should be noted that if pi ∈ (0, 1) for all i , then unless M ≥ 3,
VM, Ep = 0. If M < 3 then δ < 4 ·1−2= 2. Thus, VM, Ep is nonpositive. A symmetric
argument shows that δ >−2 and thus VM, Ep = 0 unless M ≥ 3.

Theorem 2 shows that we can identify the speed of the excited random walk
exactly when the speed is zero (when δ ∈ [−2, 2]). However, as noted above when
the speed is nonzero (when δ /∈ [−2, 2]), there is no explicit formula for the speed
VM, Ep. The focus of this paper is to compute explicit upper and lower bounds for
the speed in these cases. For simplicity we will restrict ourselves to the case of
positive speed (δ > 2) since the negative-speed case can be handled similarly by
symmetric arguments. Prior to this paper, when δ > 2 the only known upper and
lower bounds on the speed were the trivial ones

0< VM, Ep ≤max
j≤M

(2pj − 1).

The upper bound on the right is the speed of a simple random walk which moves to
the right with probability p∗ =maxj≤M pj on each step. Since this simple random
walk is always at least as likely to step right as the excited random walk, it is easy to
see that the excited random walk has a speed that is less than or equal to that of this
simple random walk. We will develop a method below for obtaining much better
bounds than these trivial bounds. In particular, in the case of M = 3 cookies per site
we will obtain upper and lower bounds which differ by at most 0.0194565.

The rest of the paper will be organized as follows. We begin with a brief
introduction to the theory of Markov chains to cover results we will use. Then we
describe a particular Markov chain related to excited random walks, known as the
backward branching process. We discuss known results about this Markov chain
and how they relate to the speed of an excited random walk. Afterward, we derive
bounds on the speed using properties of the backward branching process. We end
with a discussion of how well these bounds approximate the speed.

2. A related Markov chain

We will introduce a Markov chain that is useful for studying the speed of excited
random walks. First, however, we will give a short overview of the notation and
terminology of Markov chains and recall a few useful facts about Markov chains.

2.1. Markov chains. Recall that a Markov chain on a countable state space I is a
stochastic process {Zn}n≥0 such that for any choice of n≥1 and i0, i1, . . . , in, in+1∈ I
we have

P(Zn+1=in+1 | Z0=i0, Z1=i1, . . . , Zn−1=in−1, Zn=in)=P(Zn+1=in+1 | Zn=in)

=P(Z1=in+1 | Z0=in).
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106 E. MADDEN, B. KIDD, O. LEVIN, J. PETERSON, J. SMITH AND K. M. STANGL

The transition matrix for the Markov chain is the matrix

P = (p(i, j))i, j∈I , where p(i, j)= P(X1= j | X0=i).

For ease of notation, if the Markov chain starts at Z0= i we will write Pi ( · ) in place
of P( · | Z0=i). If the Markov chain starts from a random initial condition given by
µ= (µ(i))i∈I , where µ(i) is the probability that the Markov chain starts at Z0 = i ,
then we will denote this with the notation Pµ; that is, Pµ( · ) =

∑
i µ(i)Pi ( · ).

Expectations with respect to the probability distributions Pi and Pµ for the Markov
chain are denoted by Ei and Eµ, respectively.

A special choice of an initial distribution is a stationary distribution. A probability
distribution π = (π(i))i∈I is a stationary distribution for the Markov chain Z =
{Zn}n≥0 if Pπ (Z1= j)=Pπ (Z0= j)=π( j) for all j ∈ I , that is, if Z1 has the same
distribution π as Z0 (and thus, by induction, Zn has the same distribution as Z0 for
all n ≥ 1). If π is a stationary distribution then

π( j)= Pπ (Z1= j)=
∑
i∈I

π(i)Pi (X1= j)=
∑
i∈I

π(i)p(i, j),

so that viewing π = (π(i))i∈I as a row vector we have π = π P; that is, π is a left
eigenvector of the transition matrix P with eigenvalue 1. If the state space I of
the Markov chain is finite, then computing the stationary distributions is a simple
problem in linear algebra. However, if the state space I is countably infinite then
computing stationary distributions is much more difficult and in fact, for some
infinite state Markov chains there are no stationary distributions. It is known,
however, that if the Markov chain is irreducible (that is, if it is possible starting at
any state i to eventually reach any other state j ) and there is a stationary distribution
then it is unique.

Stationary distributions are important for the analysis of Markov chains because
they can be used to determine the long-run asymptotics of the Markov chain. For
instance, if the Markov chain is irreducible and a stationary distribution π exists,
then it is known that for any initial starting condition

lim
n→∞

1
n

n∑
k=1

Zk = Eπ [Z0] =
∑
j∈ j

π( j) j, with probability 1.

2.2. The backward branching process. Because the transition probabilities of the
excited random walk depend on the number of prior visits to the present location
and not only on the current location of the walk, an excited random walk is not
a Markov chain. However, there is a Markov chain we can study that can give
information about the excited random walk. This Markov chain is often referred
to in the literature as the “backward branching process” due to some structural
similarity with models for population growth known as branching processes. The
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 107

backward branching process is related to the excited random walk through an
analysis of the number of left (or backward) crossings of edges of the excited
random walk before the walk reaches some point to the right for the first time.
We refer the reader interested in the details of this connection to [Basdevant and
Singh 2008a]. Here we only provide a description of the transition probabilities
for this Markov chain and the relevance to the limiting speed of the excited random
walk.

To describe the transition probabilities for the backwards branching process, we
imagine an infinite sequence of independent coin flips where for the first M flips
we use coins which come up heads with probability pj for j = 1, 2, . . . ,M and
then for all subsequent flips we use a fair coin. Mathematically we can represent
this as the sequence {ξj }j≥1 of independent Bernoulli random variables where

P(ξj=1)=
{

pj if j ≤ M,
1
2 if j > M.

Next, for any m ≥ 1 we let

Fm = inf
{

k ≥ 0 :
m+k∑
j=1

ξj

}
.

Again viewing the {ξj }j≥1 as the outcomes of successive coin tosses, we have that Fm

can be interpreted as the number of “tails” before the m-th “heads”. Finally, using
this notation we are able to define the backward branching process associated to the
excited random walk with parameters M and Ep = (p1, p2, . . . , pM) as the Markov
chain Z = {Zn}n≥0 on Z+ = {0, 1, 2, . . .} with transition probabilities given by

p(i, j)= P(Fi+1= j) for i, j ≥ 0.

Example 6. Some transition probabilities which we will use later in Lemma 15 are
given below. Also we show the full transition matrix for when p1 = p2 = p3 = p.
When M = 3 cookies per site we have

• p(0,0)= p1 (no tails before a single heads),

• p(0,1)= (1−p1)p2 (one tail before a single heads),

• p(0,2)= (1−p1)(1−p2)p3 (two tails before a single heads),

• p(0,k)= (1−p1)(1−p2)(1−p3)/2k−2 for k ≥ 3 (k tails before a single heads),

• p(1,0)= p1 p2 (no tails before two heads),

• p(1,1)= (1−p1)p2 p3+p1(1−p2)p3 (one tail before two heads),

• p(k,0)= p1 p2 p3/2k−2 for k> 3 (no tails before k+1 heads).
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108 E. MADDEN, B. KIDD, O. LEVIN, J. PETERSON, J. SMITH AND K. M. STANGL

In the M = 3 case where p1 = p2 = p3 = p, (letting q := 1− p), the initial
entries of the transition matrix (with i, j ≤ 2) are

p pq pq2

p2 2p2q 3
2 pq2

· · ·

p3 3
2 p2q 3

4(pq2
+p2q)

...
. . .


and the remaining entries (when either i > 2 or j > 2) are given by

p(i, j)

=
1

2i+ j−2

[( i+ j−3
i−3

)
p3
+

( i+ j−3
j−3

)
q3
+ 3

( i+ j−3
i−2

)
p2q + 3

( i+ j−3
j−2

)
pq2

]
.

The Markov chain Z was first introduced in the study of excited random walks by
Basdevant and Singh [2008a]. It is easy to see that the Markov chain Z is irreducible
since p(i, j) > 0 for all i, j ≥ 0. Moreover, Basdevant and Singh showed that
the Markov chain Z has a (unique) stationary distribution π whenever δ > 1 (or
equivalently, by Theorem 1, when the excited random walk is transient to the right).
Most importantly, Basdevant and Singh proved that the limiting speed VM, Ep for the
excited random walk can be expressed in terms of the stationary distribution for the
Markov process Z in the following theorem.

Theorem 7 [Basdevant and Singh 2008a]. Suppose the parameters M and Ep =
(p1, p2, . . . , pM) are such that the speed VM, Ep is positive (that is, δ > 2). If π
is the stationary distribution for the corresponding backward branching process
Z = {Zn}n≥0, then

VM, Ep =
1

1+ 2Eπ [Z0]
. (3)

A rationalization for and proof sketch of Theorem 7 come from the following.
Because δ>2, the walk X is transient and almost surely limn→∞(Xn/n)=VM, Ep>0.
In such situations, it holds that almost surely

lim
n→∞

Xn

n
=

1
limn→∞(Tn/n)

,

where Tn is the hitting time of site n. Essentially, this identity is just noting that
distance over time can be expressed in terms of two different quantities for X and
each are equivalent to the velocity of the walk.

Now, the hitting-time limit can be expressed in terms of the backward branching
process by

lim
n→∞

Tn

n
= lim

n→∞

n+ 2
∑n

k=1 Zk

n
.
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 109

To see this, we count the number of steps making up the hitting time to site n.
The number of total steps down from positive site k to site k− 1 before the walk
reaches n is

∑n
k=1 Zk . Each of these down steps is canceled by one step back up to

site k before reaching n. In addition, we have the final up step from each positive
site k up to n, which is n steps. Lastly, Tn contains the total number of steps from 0
to −1 and all the steps contained in the negative half-line. Because X is transient to
+∞ when δ > 2, there are a finite (random) number L of these steps and L/n→ 0
almost surely as n goes to∞. Then we have the following equalities which imply
the conclusion of Theorem 7:

1
VM,p

= lim
n→∞

Tn

n
= lim

n→∞

L + n+ 2
∑n

k=1 Zk

n

= lim
n→∞

L
n
+

n
n
+ 2 1

n

n∑
k=1

Zk = 1+ 2Eπ [Z0].

While Theorem 7 expresses the speed VM, Ep in terms of the stationary distribution
of the backward branching process, unfortunately, this doesn’t give an explicit
formula for the speed since there is not yet an explicit formula for the stationary
distribution π (solving the infinite system of equations π P = π is too difficult). In
the following section, however, we will develop some methods which can be used
to obtain rigorous upper and lower bounds on Eπ [Z0] and consequently upper and
lower bounds on VM, Ep.

3. Reduction of the formula for the speed

We will show how some recursive formulas for the probability-generating function of
the distribution π can be used to get useful approximations (upper and lower bounds)
of Eπ [Z0]. The starting point of our analysis of the speed of the excited random walk
is a recursive formula for the probability-generating function G(s) :=

∑
∞

k=0 π(k)s
k

of the stationary distribution π for the Markov chain Z . Basdevant and Singh
[2008a] showed that G(s) is the unique solution of the functional equation

1−G
( 1

2−s

)
= A(s)[1−G(s)] + B(s), s ∈ [0, 1], (4)

where

A(s)=
1

(2− s)M−1EM−1[s Z1]
,

and

B(s)=1−
1

(2−s)M−1EM−1[s Z1]
+

M−2∑
k=0

π(k)
(

Ek[s Z1]

(2−s)M−1EM−1[s Z1]
−

1
(2−s)k

)
. (5)
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While the recursive equation (4) is still to hard to solve explicitly, using the fact
that 1/(2− s)≈ s when s ≈ 1, Basdevant and Singh were able to use (4) to obtain
asymptotics of the function G(s) near s = 1. This is particularly useful because of
the property of probability-generating functions that

G ′(1)=
∞∑

k=1

π(k)k = Eπ [Z0]. (6)

By careful analysis of this recursive equation near s = 1 and using the formula (3)
for the speed, Basdevant and Singh were able to deduce the following implicit
formula for the speed of an ERW.

Theorem 8 [Basdevant and Singh 2008a]. If the speed is nonzero (i.e., if δ > 2),
then

Eπ [Z0] = G ′(1)=
B ′′(1)

2(δ− 2)

and consequently the speed is equal to

VM, Ep =
δ− 2

δ− 2+ B ′′(1)
, (7)

where B(s) is defined in (5).

In deriving the representation (7) for the speed, Basdevant and Singh were
primarily interested in determining when the speed VM,p was positive. However,
an additional consequence of this formula is that it comes much closer to giving an
explicit formula for the speed. While computing Eπ [Z0] using the standard formula
in (6) requires knowing all of the stationary distribution, Theorem 8 shows we
can instead compute this using only the M − 1 values π(0), π(1), . . . , π(M − 2).
This is because all of the probability-generating functions Ek[s Z1] can be computed
explicitly so that the only unknown terms in B(s) are π(0), π(1), . . . , π(M − 2).

Example 9. In the general case of M = 3 cookies, the formula for B(s) involves
Ek[s Z1] for k = 0, 1, 2. These can be explicitly computed using the formulas for
the transition probabilities p(k, j) for the backward branching process:

E0[s Z1] = p(0, 0)+sp(0, 1)+s2 p(0, 2)+
∞∑

k=3

sk p(0, k)

= p1+s[(1−p1)p2]+s2
[(1−p1)(1−p2)p3]

+(1−p1)(1−p2)(1−p3)

∞∑
k=3

sk

2k−2

= p1+s[(1−p1)p2]+s2
[(1−p1)(1−p2)p3]−

(1−p1)(1−p2)(1−p3)s3

s−2
.
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 111

Similar explicit calculations show that

E1[s Z1] =
s(2p2(s− 1)− s)(2p3(s− 1)− s)

(s− 2)2

−
p1(s− 1)

(
p2(2p3(3s− 4)s− 3s2

+ 4)+ 2s(s− 2p3(s− 1))
)

(s− 2)2
,

and

E2[s Z1] =
(2p1(s− 1)− s)(2p2(s− 1)− s)(2p3(s− 1)− s)

(s− 2)3
.

As noted above, Theorem 8 shows that the speed VM, Ep for an excited random walk
can be expressed in terms of only the unknown values π(0), π(1), . . . , π(M − 2).
The following lemma, however, gives a linear relation among these parameters so
that we can actually eliminate one of the unknowns.

Lemma 10. The unique stationary distribution π of {Zn}n≥0 satisfies

δ− 1=
M−2∑
k=0

π(k)(Ek[Z1] − k− 1+ δ).

Remark 11. Note that for any fixed excited-random-walk parameters M and Ep,
the expectations Ek[Z1] =

∑
∞

j=0 j p(k, j) appearing in Lemma 10 can be explicitly
calculated.

Proof. Due to properties of the stationary distribution we know

Eπ [Z0] = Eπ [Z1],

or equivalently
∞∑

k=0

kπ(k)=
∞∑

k=0

π(k)Ek[Z1]. (8)

In general, the expectations Ek[Z1] have to be calculated individually using the tran-
sition probabilities for the Markov chain {Zn}n≥0. However, Basdevant and Singh
[2008a, Lemma 3.3] showed that the following pattern emerges when k ≥ M − 1:

Ek[Z1] = k+ 1− δ for all k ≥ M − 1. (9)

(We provide a proof of (9) in the Appendix.) Using this, and splitting both sums in
(8) into k ≤ M − 2 and k ≥ M − 1, we obtain

M−2∑
k=0

kπ(k)+
∞∑

k=M−1

kπ(k)=
M−2∑
k=0

π(k)Ek[Z1] +

∞∑
k=M−1

(k+ 1− δ)π(k).
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Noting that
∑
∞

k=M−1 kπ(k) appears on both sides, we reduce this to

M−2∑
k=0

kπ(k)=
M−2∑
k=0

π(k)Ek[Z1] + (1− δ)
∞∑

k=M−1

π(k)

=

M−2∑
k=0

π(k)Ek[Z1] + (1− δ)− (1− δ)
M−2∑
k=0

π(k),

where in the last equality we used that
∞∑

k=M−1

π(k)= 1−
M−2∑
k=0

π(k)

because π is a probability distribution. The statement of the lemma is then obtained
by simplifying. �

As a special case, when there are M = 3 cookies, Lemma 10 gives a simple
linear relation between π(0) and π(1).

Corollary 12. For M=3 cookies with strength Ep= (p1, p2, p3), the linear equation

aπ(0)+ bπ(1)= c,

where (recalling the notation δj = 2pj − 1)

a := p1(δ2+ δ3)+ p2δ3(1− p1),

b := δ3 p1 p2,

c := δ− 1,
follows from above.

Proof. When M = 3, the equation in Lemma 10 becomes

δ− 1= [E0[Z1] + δ− 1] ·π(0)+ [E1[Z1] + δ− 2] ·π(1). (10)

Next, note that E0[Z1] and E1[Z1] can be explicitly calculated from the known
transition probabilities for Z (compare with Examples 6 and 9 above). For example,

E0[Z1] = 0(p1)+ 1(1− p1)p2+ 2(1− p1)(1− p2)p3

+ (1− p1)(1− p2)(1− p3)

∞∑
k=3

k
2k−2

= (1− p1)p2+ 2(1− p1)(1− p2)p3+ 4(1− p1)(1− p2)(1− p3)

= 4− 4p1− 3p2− 2p3+ 3p1 p2+ 2p1 p3+ 2p2 p3− 2p1 p2 p3,

and similarly it can be shown that

E1[Z1] = 5− 2(p1+ p2+ p3)− p1 p2(2p3− 1)= 2− δ− p1 p2δ3.
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BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 113

Substituting these formulas for E0[Z1] and E1[Z1] in (10) and simplifying we obtain
the statement of the corollary. �

4. Bounds on the speed

Theorem 8 and Lemma 10 combined show that the speed VM, Ep of an excited
random walk with δ > 2 can be computed in terms of only the unknown values
π(0), π(1), . . . , π(M − 3). Actually computing this function, however, is rather
involved as especially computing B ′′(1) is a tedious task. Thus, for the remainder of
the paper we will restrict ourselves to the case M = 3 so that explicit computations
can be done. With the aid of Mathematica to compute the derivatives in B ′′(1), we
were able to show the following.

Theorem 13. For an excited random walk with M = 3 cookies of strengths Ep =
(p1, p2, p3), if δ > 2, the limiting speed is equal to

V3, Ep =
f1

f2+ f3 ·π(0)
, (11)

where
f1 = 2p1+ 2p2+ 2p3− 5,

f2 = 9+ 8(p1 p2+ p1 p3+ p2 p3)− 10(p1+ p2+ p3),

f3 = 2(2p3− 1)(p1+ p2− 3p1 p2).

The formula in (11) doesn’t quite calculate V3, Ep explicitly since we do not know
the value of π(0). However, the following lemma shows that we can easily use this
formula to compute upper and lower bounds on the speed.

Lemma 14. Let f1, f2 and f3 be as in Theorem 13. Then, if δ=
∑3

j=1(2pj−1)> 2
the function x 7→ f1/( f2+ f3x) is strictly positive and increasing for x ∈ [0, 1].

Proof. If g(x) = f1/( f2+ f3x), then g′(x) = − f1 f3/( f2+ f3x)2. Thus, to show
that g(x) is decreasing we need only to show that f1 f3 < 0 when p1, p2, p3 are
such that δ > 2. Note first of all that δ > 2 is equivalent to p1 + p2 + p3 >

5
2 .

Therefore,
f1 = 2(p1+ p2+ p3)− 5> 0,

and so it remains to show f3 < 0. To see this, note that since p1, p2 and p3 are each
at most 1, the condition δ > 2 implies that they are all strictly larger than 1

2 . Thus,

f3 = 2(2p3− 1)(p1+ p2− 3p1 p2) < 0 if p1+ p2− 3p1 p2 < 0.

When δ > 2, it follows that p1+ p2 ∈
( 3

2 , 2
)
. Therefore, if we fix t ∈

(3
2 , 2

)
and if

p1+ p2 = t then

p1+ p2− 3p1 p2 = t − 3p1(t − p1)= 3p2
1 + (1− 3p1)t
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and we wish to show that this is negative for all p1 ∈ [t − 1, 1]. However, since
3p2

1 + (1− 3p1)t is convex in p1 we need only to check the value at the endpoints
p1 = t − 1 and p1 = 1, and at both endpoints this evaluates to 3− 2t < 0. This
completes the proof that f3< 0 whenever δ > 2 and thus also that g(x) is decreasing
for x ∈ [0, 1].

Since we have already shown that f1 > 0 and f3 < 0 when δ > 2, it will follow
that g(x) is nonnegative on [0, 1] if we can show that f2+ f3 > 0 whenever δ > 2.
This will be accomplished by showing that

f2+ f3 ≥ 0 when δ = 2, (12)

and
∂

∂pi
( f2+ f3) > 0 for i = 1, 2, 3 whenever δ > 2. (13)

To show (12), note that if δ = 2 then p1+ p2+ p3 =
5
2 . Therefore, substituting

p3 =
5
2 − p1− p2 into f2+ f3 and then factoring we have

( f2+ f3)
(

p1, p2,
5
2 − p1− p2

)
=−16+ 28p1− 12p2

1 + 28p2− 40p1 p2+ 12p2
1 p2− 12p2

2 + 12p1 p2
2

= 4(1− p1)(1− p2)(3p1+ 3p2− 4).

However, if δ = 2 then p1+ p2 =
5
2 − p3 ≥

3
2 and thus 3p1+ 3p2− 4≥ 9

2 − 4= 1
2 .

From this, the claim in (12) follows.
To show (13), note that direct computation of derivatives yields

∂( f2+ f3)

∂p1
=−12+ 14p2+ 12p3− 12p2 p3 = 2p2− 12(1− p2)(1− p3),

∂( f2+ f3)

∂p2
=−12+ 14p1+ 12p3− 12p1 p3 = 2p1− 12(1− p1)(1− p3),

∂( f2+ f3)

∂p3
=−10+ 12p1+ 12p2− 12p1 p2 = 2− 12(1− p1)(1− p2).

For the partial derivative with respect to p1, δ > 2 implies p3 >
3
2 − p2 so that

(1− p2)(1− p3) < (1− p2)(p2− 1/2)≤ 1
16 .

Also, since δ > 2 implies p2 >
1
2 , we have

∂( f2+ f3)

∂p1
> 2

( 1
2

)
− 12

( 1
16

)
=

1
4 > 0.

Similar arguments show that ∂( f2+ f3)/∂p2 >
1
4 and ∂( f2+ f3)/∂p3 >

5
4 when

δ > 2. This completes the proof of (13) and thus also the proof of the lemma. �

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40



BOUNDS ON THE SPEED OF A ONE-DIMENSIONAL EXCITED RANDOM WALK 115

Using Lemma 14, it follows that we can obtain upper and lower bounds on V3, Ep

by using the simple bounds 0≤ π(0)≤ 1; that is,

f1

f2
≤ V3, Ep ≤

f1

f2+ f3
.

However, we can get improved upper bounds on π(0) by using the fact that π is
not just a probability distribution but also a stationary distribution for the Markov
chain {Zn}n≥0.

Lemma 15. For an excited random walk with M = 3 cookies of strengths Ep =
(p1, p2, p3),

c · p1 p2

b · (1− p1)+ a · p1 p2
≤ π(0)≤ c

(
b · (1− p1)p2

1− ((1− p1)p2 p3+ p1(1− p2)p3)
+ a

)−1

,

where a, b, and c are defined in Corollary 12.

Proof. Since π is the stationary distribution of a Markov chain with transition
probability matrix P = (p(i, j))i, j≥0, we know that the (infinite) matrix equation
π = π P holds. That is,

π(i)=
∞∑

k=0

π(k)p(k, i) for any i ≥ 0.

If we drop all but the first two terms in the sum on the right we then obtain the
inequality

π(i)≥ π(0)p(0, i)+π(1)p(1, i), (14)

where p(i, j) is the transition probability from state i to state j in the backward
branching process. For a lower bound on π(0) we use i = 0 in (14) and then
Corollary 12 to get

π(0)≥ p(0, 0)π(0)+ p(1, 0)π(1)

= p(0, 0)π(0)+ p(1, 0)
c− aπ(0)

b
.

Then, solving for π(0) and using the formulas for the transition probabilities yields
the lower bound

π(0)≥
c · p(1, 0)

b · (1− p(0, 0))+ a · p(1, 0)
=

c · p1 p2

b · (1− p1)+ a · p1 p2
. (15)

For an upper bound we repeat the same process, this time using i = 1 in (14)
and applying Corollary 12 to get

c− aπ(0)
b

≥ π(0)p(0, 1)+
(

c− aπ(0)
b

)
p(1, 1).
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Solving this for π(0) and then using the formulas for the transition probabilities
yields the upper bound

π(0)≤ c
(

b·p(0,1)
1−p(1,1)

+a
)−1

= c
(

b·(1−p1)

1−((1−p1)p2 p3+p1(1−p2)p3)
+a
)−1

. (16)

This completes the proof. �

By applying Lemmas 14 and 15 to Theorem 13, we can obtain explicit upper
and lower bounds on the speed of excited random walks with M = 3 cookies. The
upper/lower bounds are obtained by substituting the respective upper/lower bounds
for π(0) in Lemma 15 into the formula for the speed in (11). In the special case of
p1 = p2 = p3 >

5
6 , this gives the following explicit formulas for upper and lower

bounds on the speed:

(6p− 5)(p2
− 2p− 1)

24p4− 42p3− 3p2+ 28p− 9
≤ V3,(p,p,p),

V3,(p,p,p) ≤
(6p− 5)(2p4

− 7p3
+ 5p2

+ p− 3)
48p6− 156p5+ 180p4− 61p3− 53p2+ 51p− 11

.

(17)

As is seen in Figure 2, these upper and lower bounds are remarkably close together.
In fact, using NMaxValue and NArgMax (Mathematica’s numerical optimization
functions) one sees that the maximum difference between the upper and lower
bounds is at most 0.010326 and is obtained approximately at p = 0.86649.

In the general case with M = 3 cookies, the upper and lower bounds are again
explicit rational functions in (p1, p2, p3), but these rational functions are extremely
long and so we leave it to the interested reader to compute these upper bounds explic-
itly (with the aid of Mathematica or some other computer algebra software). We note,
however, that even in this more general case the upper and lower bounds are remark-
ably close together. Indeed, again using Mathematica’s NMaxValue and NArgMax
functions we obtain that the upper and lower bounds differ by at most 0.0194564
and that this maximum is obtained at approximately Ep = (0.913811, 0.666396, 1).

5. Conclusion

Basdevant and Singh showed that the speed of an excited random walk with
M cookies per site can be expressed in terms of the expected value of the stationary
distribution π of a certain Markov chain on Z+. By using some recursions on the
probability-generating function of π that were obtained by Basdevant and Singh,
we were able to show that for any fixed values of the parameters p1, p2, . . . , pM ,
the speed can be expressed as an explicit function of only the M − 2 unknown
values π(0), π(1), . . . , π(M − 3). In the case of M = 3 there is only one unknown
parameter, π(0), and we can therefore obtain bounds on the speed by obtaining
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Figure 2. On the left is a plot of the upper and lower bounds for
V3,(p,p,p) given in (17). The upper and lower bounds are so close
as to be nearly indistinguishable, and so on the right we plot the
difference between the upper and lower bounds.

explicit bounds on π(0). The bounds we obtain in the case M = 3 are very close
together, but an exact computation of the speed is at this point still out of reach.

We conclude this paper by stating some remaining open questions related to the
results in this paper:

(1) Can one implement the methods developed in this paper to obtain explicit upper
and lower bounds on the speed VM, Ep when M ≥ 4? The main difficulty here will
be that instead of optimizing a function of one variable over an interval, one will
need to find the minimum and maximum of a function of M − 2 variables over an
(M−2)-dimensional region.

(2) For any fixed M , is the function (p1, p2, . . . , pM) 7→ VM,(p1,p2,...,pM ) differen-
tiable in the region where δ =

∑M
j=1(2pj −1) > 2? It was shown in [Basdevant and

Singh 2008a] for critical Ep= (p1, p2, . . . , pM) (that is, where δ= 2) that the speed
function Ep 7→VM, Ep has a positive “right derivative” (that is, the directional derivative
is positive in all directions Eu pointing toward the interior of the region where δ > 2).
For instance, this implies p 7→ V3,(p,p,p) has a positive right derivative at p = 5

6 .
Since the explicit upper and lower bounds in (17) have the same derivative at p= 1,
our results show that p 7→ V3,(p,p,p) is differentiable at p= 1 (with derivative equal
to 2). It remains open, however, to show that V3,(p,p,p) is differentiable in

( 5
6 , 1

)
.

Appendix: Proof of (9)

We will now give a proof that Ek[Z1] = k+ 1− δ for all k ≥ M − 1.

Proof. We will compute Ek[Z1] by conditioning on SM =
∑M

j=1 ξj (the number of
successes in the first M Bernoulli trials):

Ek[Z1] =

M∑
i=0

P(SM=i) E[Z1 | Z0=k and SM=i]. (18)
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Recall when Z0 = k that Z1 is the number of “failures” before the (k+1)-th
“success” in the sequence of Bernoulli trials. Given that SM = i we know that
there are i successes and M − i failures in the first M trials, and thus Z1 is
M − i plus the number of failures before the (k+1−i)-th success in a sequence of
Bernoulli

( 1
2

)
trials. Since the number of failures before the (k+1−i)-th success is

a NegativeBinomial
(
k+ 1− i, 1

2

)
random variable which has mean k+ 1− i , we

can therefore conclude that

E[Z1 | Z0=k and SM=i] = M − i + (k+ 1− i)= M + k+ 1− 2i.

Plugging this into (18) we obtain

Ek[Z1] =

M∑
i=0

P(SM=i) · (M + k+ 1− 2i)= M + k+ 1− 2
M∑

i=0

i ·P(SM=i)

= M + k+ 1− 2E[SM ] = M + k+ 1− 2
M∑

j=1

E[ξj ]

= M + k+ 1− 2
M∑

j=1

pj = (k+ 1)−
( M∑

j=1

2pj − 1
)
= k+ 1− δ. �
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